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Abstract: A new projection-pursuit index is used to identify clusters and other struc-
tures in multivariate data. It is obtained from the variance decompositions of the
data’s one-dimensional projections, without assuming a model for the data or that the
number of clusters is known. The index is affine invariant and successful with real
and simulated data. A general result is obtained indicating that clusters’ separation
increases with the data’s dimension. In simulations it is thus confirmed, as expected,
that the performance of the index either improves or does not deteriorate when the
data’s dimension increases, making it especially useful for “large dimension-small
sample size” data. The efficiency of this index will increase with the continuously
improved computer technology. Several applications are presented.
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1. Introduction

A new method is proposed to detect clusters and other structures in the
data. Clustering methods are nowadays of considerable interest for several
scientific communities and the related literature is vast. Their goal is to
partition the data into groups, containing each “similar” objects satisfying a
criterion.

It is often assumed that the data arises from a mixture of multivariate
normal distributions and maximum likelihood and Bayesian methods are
used to derive clustering criteria, some of which impose restrictions on the
orientation, the shape and the size of the clusters, and on the assumed model
(Day 1969; Wolfe 1970; Scott and Symons 1971; Binder 1978; Symons
1981; Banfield and Raftery 1993; Dasgupta and Raftery 1998). Without
parametric model assumptions, the modes of the kernel estimate can be
taken as cluster centers (Hartigan 1975). Vichi and Saporta (2009) use con-
strained principal components analysis aiming at simultaneous clustering of
objects and a partitioning of variables by identifying components with max-
imum variance. An introduction to the current practice of cluster analysis
with many additional references can be found in Kettenring (2006).

Projection pursuit (PP) methods indicate interesting, low dimensional
projections of high dimensional data and can be used in cluster detection.
The projection indices usually measure either the condensation of observa-
tions or the departure of the smooth data from the normal or other reference
distributions. Switzer (1985) suggests as interesting projections those which
exhibit bimodality or multimodality. Kruskal’s (1969) “index of condensa-
tion” seeks clusters and is based on the coefficient of variation of interpoint
distances. Friedman and Tukey’s (1974) index is the product of measures
of “spread” and “local density” of the data, after projection on an axis.
Huber (1985) suggests the entropy index that is minimized at the normal
distribution and Jones and Sibson (1987) approximate it with a moments in-
dex. Various indices estimate the L2-distance of the density of the projected
transformed data from the standard normal or the uniform distributions, us-
ing orthogonal polynomial expansions (Friedman 1987; Hall 1989; Cook,
Buja and Cabrera 1993; and Nason 1995). Posse (1995) shows that the ef-
ficacy of projection indices depends to a large extent on the optimization
routine and stresses the importance of studying the behavior of the empiri-
cal index rather than the population index. Peña and Prieto (2001) propose
a one-dimensional PP-algorithm to detect clusters based on the kurtosis and
the spacings of the projected data. Bolton and Krzanowski (2003) introduce
a PP-clustering index based on orthogonal canonical variates that takes ac-
count of scale in the data. Perisic and Posse (2005) propose PP-indices
based on the empirical distribution function that do not require to be tuned.
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Several of the above methods estimate initially the model in order
to subsequently detect clusters, and are thus affected by the curse of di-
mensionality. We also assume that the data follows a mixture density and
that clusters are observations from the support of the same mixture compo-
nent. A new PP-index, obtained from the variance decomposition (Yatracos
1998) of the data’s one-dimensional projections, is used to identify these
clusters and other structures in multivariate data without assuming a model
for the data or that the number of clusters is known. The index is successful
with high dimensional data because a) there is no need to estimate unknown
model parameters, and b) under mild conditions, the separation of the clus-
ter densities increases with the dimension and makes cluster detection easier.
This effect is confirmed in several examples. Both a) and b) make the index
a useful tool for data sets with a large number of predictors r and small sam-
ple size n, the “r >> n” phenomenon (Yu 2007), and a serious candidate
for inclusion in cluster ensembles (see, for example, Fern and Lin 2008)
along with other clustering methods.

In Section 2, the population index is provided. In Section 3, the sam-
ple index is presented. In Section 4, the use of the sample index is described
and in Section 5 choices for projection directions are discussed. In Section
6, applications in the Ruspini (1970) data, the Iris data (Fisher 1936) and the
Hadi-Simonoff (1993) artificial data are presented, as well as comparisons
i) of misclassification proportions with other indices and ii) of the clusters
obtained when studying economic sustainability of E.U. countries with var-
ious clustering methods. In Section 7, theoretical results are presented for
the index and its components and simulation results indicate the nature of
the clusters’ separator. In Section 8, a general result is presented on clus-
ters’ separation by hyperplanes when the data’s dimension increases, that
explains the success of the proposed PP-index.

2. Variance, Clusters, and the Population Indices

For a random variable Y with cumulative distribution G and variance
V ar(Y ), let

v(G, y) = G(y)[1 −G(y)][E(Y |Y > y)− E(Y |Y ≤ y)];

E denotes expected value with repect to G. It has been shown (Yatracos
1998) that

V ar(Y ) =

∫ +∞

−∞
v(G, y)dy. (1)
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2.1 The Population Index

Index I∗ for discrete, univariate distributions

Definition 2.1 From (1), for a discrete random variable X with mean 0,
variance 1, values Q = {x1 < x2 < . . . < xk < . . .} and cumulative
distribution G it holds

1 = V ar(X) =

+∞
∑

i=1

v(G,xi)(xi+1 − xi), (2)

and the population index I∗Q(G) is the largest variance component in (2), i.e.

I∗Q(G) = sup{v(G,xi)(xi+1 − xi), i = 1, 2, . . .}. (3)

Remark 2.1 In (2), v(G,xi)(xi+1 − xi) measures the contribution of the
groups {x1, . . . , xi} and {xi+1, . . .} in V ar(X) and between-groups varia-
tions, i ≥ 1.

Index I∗ for continuous, univariate distributions
A random variable is considered with cumulative distribution constant

in one or more intervals, as it happens with the data.

Definition 2.2 For a continuous random variable X with mean 0, variance 1
and cumulative distribution G, let Q̃fixed(6= ∅) be the end-points of intervals
(x̃2k+1, x̃2k+2), where v(G,x) is constant, x ∈ R, k = 0, 1, 2, . . . . Let Q̃
be a partition of R− ∪+∞

k=0(x̃2k+1, x̃2k+2). The partition Q of R,

Q = Q̃ ∪ Q̃fixed = {x1 < x2 < . . . < xk < . . .},

is used to approximate (1) by a Riemann sum like that in (2) and has mesh
size

δ(Q) = sup{xk+1 − xk : not both xk+1, xk are in Q̃fixed}.

For distribution G, the population index I∗(G) is

I∗(G) = lim sup
δ(Q)→0

I∗Q(G); (4)

I∗Q(G) is given by (3).

Index I∗ for continuous, multivariate distributions

Definition 2.3 When X is a random vector in Rr and Ga is the standard-
ized distribution (i.e. with mean 0 and variance 1) of aTX, aTa = 1, the
population index

I∗(G) = sup
a

I∗(Ga); (5)
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I∗(Ga) is defined in (4), r > 1.

Example 2.1 Random variable Y has density pf + (1 − p)h, 0 < p <
1, and the supports Sf and Sh of f and h are, respectively, two disjoint
intervals at distance ∆ = yh,L − yf,U (> 0), yh,L = inf Sh, yf,U = supSf

and Q̃fixed = {yh,L, yf,U}. Let Q̃ = {y1, y2, . . .} be a partition of R −

(yf,U , yh,L). Partition Q = Q̃ ∪ Q̃fixed has mesh size δ(Q) when excluding
the difference yh,L− yf,U . Assume the variance of Y is bounded. From (1),
for small δ(Q),

V ar(Y ) ≈
∑

Q−{yh,L,yf,U}

v(G, yi)(yi+1 − yi) + p(1− p)[EhY − EfY ]∆,

and the largest variance component

sup
i=1,2,...

v(G, yi)(yi+1 − yi) = p(1− p)[EhY − EfY ]∆; (6)

EfY, EhY are the first moments of Y under f, h respectively. The value of
the supremum in (6) is attained at the interval (yg,L, yf,U ) that separates Sf

and Sh. In applications, a large sample from pf + (1 − p)g is used instead
of Q.

Example 2.1 confirms that the index works when Y ’s density is k-
mixture with supports, respectively, k-disjoint intervals. For example, when
k = 3 the mixture density p1f1 + p2f2 + p3f3 can be written as p1f1 +
(1 − p1)f

∗
1 , f

∗
1 = (p2f2 + p3f3)/(1 − p1), and the supports are identified

sequentially as when k = 2.

3. The Sample Index

3.1 The Sample Index I for Univariate Data

Let X1, ...,Xn be univariate observations. For the groups of the i
smaller observations X(1), . . . ,X(i) and the (n − i) larger observations
X(i+1), . . . ,X(n) denote their averages, respectively, X̄[1,i] and X̄[i+1,n], i =

1, ..., n − 1; X(i) is the i-th order statistic and X̄ is the sample mean. The
sample variance counterpart of (1) in Yatracos (1998) is

1

n

n
∑

i=1

(Xi − X̄)2 =

n−1
∑

i=1

i(n− i)

n2
(X̄[i+1,n] − X̄[1,i])(X(i+1) −X(i)), (7)

and the summands in the right hand side of (7) measure between-groups
variations.
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Definition 3.1 The standardized sample variance components

Wi = Wi(X1, . . . ,Xn) (8)

=
i(n− i)

n

(X̄[i+1,n] − X̄[1,i])(X(i+1) −X(i))
∑n

i=1(Xi − X̄)2
, i = 1, . . . , n− 1,

indicate the relative contribution of the groups X(1), ...,X(i) and X(i+1), ...,
X(n) in the sample variability.

Remark 3.1 The Wi’s in (8) are location and scale invariant,
∑n−1

i=1 Wi = 1
and 0 ≤ Wi ≤ 1, i = 1, . . . , n− 1.

Definition 3.2 The statistic

I = max{Wi, i = 1, . . . , n− 1} (9)

determines two potential clusters. When I = Wj , these clusters are

C̃1 = {X(1), . . . ,X(j)}, C̃2 = {X(j+1), . . . ,X(n)},

and the cluster separators are s̃1 = X(j), s̃2 = X(j+1).

Remark 3.2 Fisher (1958) proposed a practical procedure to obtain G
homogeneous groups of n observations (in R) by minimizing the pooled-
within-group variance and showed for the minimization it is enough to ex-
amine contiguous data partitions. This approach differs from the sequential
clustering proposed herein, since a) the total variance is used instead, and
b) the clusters are the 2 contiguous data partitions with maximal component
in decomposition (7) that is the only one with all its components positive,
unlike decomposition (15) that is based on non-contiguous partitions.

3.2 The Sample Index IX (ã) for Multivariate Data

Data X is the r by n matrix of r-dimensional observations. The co-
efficients of the orthogonal projection of X along the unit norm r-row vec-
tor a are aTX = (aTX1, . . . , a

TXn);Xj is the j-th observation-column of
X , j = 1, . . . , n. The split in the sorted values of aTX where the maximum
weight

IX (a) = max{Wi(a
TX1, . . . , a

TXn); i = 1, ..., n − 1} (10)

is attained determines along a the groups CX ,1(a) and CX ,2(a) in X , with
separators the columns sX ,1(a) and sX ,2(a) of X . CX ,1(a) and CX ,2(a) can
be separated by a hyperplane H(a) passing between sX ,1(a) and sX ,2(a)
with normal a.
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Definition 3.3 Let ã = arg maxa IX (a), subject to the constraint aTa =
1. IX (ã) is the cluster-index (or “the index”) of X and C̃X ,1, C̃X ,2, s̃X ,1, s̃X ,2

are respectively the potential clusters in X and their separators along ã; s̃ =
.5(s̃X ,1 + s̃X ,2) is the midpoint separator.

Desirable properties for IX (ã) include location, scale and rotation
invariance for its value, for the separators and the obtained clusters.

Proposition 3.1 IX (ã), C̃X ,1, C̃X ,2, s̃X ,1, s̃X ,2 are affine invariant.

In applications, no analytic form of ã is provided but it is approxi-
mated by maximizing IX (a) over sets of projection directions described in
Section 5. The maximum value is denoted with abuse of notation IX (ã)
and it is not necessarily affine invariant. However, it is invariant under ro-
tation when maximizing IX (a) over the set of observations. Significance
of IX (ã)’s values with respect to the normal model is discussed in the Ap-
pendix, after the proofs.

Remark 3.3 Both I∗ and I achieve their upper bound for any population
and sample, respectively, with two values (strict bimodality). Examination
of data splits indicated by I-values for various projections may indicate “in-
teresting” data structures.

4. Use of the Sample Index

The proposed method requires repeated applications and evaluation
of the obtained results. To apply the method:
(i) When looking for data structures, examine the data splits corresponding
to local maxima of the index along several projection directions without
checking for statistical significance.
(ii) When looking for the least homogeneous data clusters, search for the
projection ã of the global maximum of IX (a) (or its approximation) and the
associated data split.

Clustering Criterion: The data split obtained in (ii) determines two clusters
when the index value IX (ã) (or its approximation) is significant at 95% with
respect to the normal model and the size of each of the two clusters is larger
than 5% of the size of the original data. When one of these conditions is
not satisfied the search for clusters stops. For a sample with size n, the
adjusted quantile zα = (xα + lnn)/n is compared with IX (ã) to determine
significance; see Remark 9.1 in the Appendix.

Remark 4.1 Some statisticians may not consider few extreme observations
as cluster and adopt a smallest acceptable cluster’s size to be, say, larger than
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5% of the data’s original size. Other statisticians may use the criterion with-
out imposing such restriction and continue data’s separation determining
clusters with other methods.

5. Projection Directions for Calculating the Index

When X has (r + 1) covariates, we use in the applications as projec-
tion directions:
a) the observations’ vectors motivated from the notion of sufficiency, i.e. all
the information is in the data, for example, the observations and their differ-
ences, and
b) the set of vectors

(Πr
l=1cosθl, sinθ1Π

r
l=2cosθl, ..., sinθr−1cosθr, sinθr), (11)

where θl takes values in {mπ
M

,m = 1, ...,M}, l = 1, ..., r. SeveralM -values
are used until the index value is stabilized.

In simulations, IX (ã)’s approximation using the observations in a)
determines successfully clusters from multivariate normal and t-mixtures,
especially in high dimension. These projection directions are not equally
informative for mixtures of uniform distributions.

In other examples, sieves of one-dimensional projection directions
in b) are used to approximate IX (ã). A referee mentioned that the search
becomes computationally intensive as r increases. However, the efficiency
of the index will improve with the continuously increasing computers’ speed
and as a different referee suggested indirectly, only subsets of the sieve in
neighborhoods of the observations in a) can be used. The index value is
not rotation invariant when computed using the sieve of directions in b).
However, with simulated data that is rotated with random matrices, results at
the end of Section 6.4 indicate that the average misclassification proportions
of the clusters are similar (Table 5) and, in addition, as M increases the
number of obtained clusters that coincide with those obtained after data’s
rotation also increase (Table 6) .

The directions in a) and b) can also be used as starting directions to
approximate IX (ã) with optimizers. We used finally R-optimizer nlm that
is based on a Newton type algorithm with bracketing. An extreme value of
the index is obtained for every projection direction and the overall maximum
is the index value. The results are better than those obtained with other R-
optimizers. A referee mentioned, “if a nonlinear optimization procedure
must be used, then a significant complication arises: the proposed criterion
is a nonsmooth function of the projection direction (it has discontinuous
first derivatives)”. We agree and the user of the method can decide on the
optimizer’s choice.
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When calculating the index, the method’s user has the final choice on
the projection directions. For example, instead of b) the directions in Peña
and Prieto (2001) can be used that minimize the kurtosis coefficient of the
projected data. Alternatively, those in Peña and Prieto (2007) can be used
that include also random directions and their modifications, combined in a
procedure that is affine equivariant. We strongly suggest to include always
the directions in a) and b). This author would also consider centering of the
data but not sphering.

6. Examples-Comparisons with Other Methods

6.1 Clusters in the Ruspini (1970) Data

The data consists of 75 observations in R2 forming 4 groups, and is a
benchmark for illustrating clustering techniques. Discretized directions are
obtained using (11) with M = 100. Observations {1, . . . , 20, 61 . . . , 75}
and {21, . . . , 60} are identified as clusters since (with abuse of notation)
IX (ã) = 0.5147757 and from Remark 9.1 the 95-th percentile z.95 =
0.09716911. Subsequent applications of the method in each subgroup (with
M = 100) identify as clusters the observations 21 − 43 and 44 − 60 with
IX (ã) = 0.3505823, z.95 = 0.1664769 and the observations 1−20 and 61−
75 with IX (ã) = 0.5791824, z.95 = 0.1864441. The groups of observations
appear in Figure 1 labelled with a, b, c, d. Subsequent application of the
method in each of the four groups identified potential clusters with 3 and 4
observations that do not exceed the threshold value of 4 observations.

6.2 A Projection Direction Improving the Iris Species Misclassification

For each of three species of Iris flowers (Setosa, Versicolor and Vir-
ginica) the length and width of the sepals and petals are measured on 50
flowers to obtain without labeling data with n = 150 cases in r = 4 di-
mensions. The goal is to identify from the measurements the 3 different
species. Iris Setosa is easily identified with most methods and the proposed
index. For the remaining species, IX (ã) and the clusters C̃X ,1 and C̃X ,2 do
not provide the best classification results with observations {71, 84, 130,
134} misclassified. Using Fisher’s linear discriminant (Fisher 1936), 3 ob-
servations are misclassified; using two of the criteria in Friedman and Rubin
(1967) observations {71, 78, 84} and {71, 84, 134}, respectively, are mis-
classified; in Friedman and Tukey (1974), a count on Figure 2(d), p. 886,
indicates 3 misclassified observations.

When IX (a) and the potential clusters CX ,1(a) and CX ,2(a) are ob-
tained for several discretized directions one can search for the direction that
minimizes the number of misclassified observations. Projection directions
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Figure 2. Histogram of the projection. Misclassified observations: 71,84

are obtained using (11) with M = 12. Observations {71, 84} are misclassi-
fied for the Iris Versicolor and Iris Virginica in the data split along projection
direction (−0.34151,−0.09151, 0.61237, 0.70711)T ; see Figure 2. There is
no improvement in the classification for M ≤ 40.

6.3 Outliers in the Hadi-Simonoff (1993) Data

The data consists of n = 25 cases according to the model Y =
X1 + X2 + ε, with the error ε from a standard normal. X1 and X2 are
both uniform random variables on (0, 15) with correlation .5. Cases 1-3
were perturbed for the X’s to take values near 15 and to satisfy the rela-
tion Y = X1 +X2 + 4. A scatterplot of the data is in Figure 3a. The goal
is to identify the data groups from different distributions. Discretized pro-
jection directions are obtained using (11) with M = 3. Using R-optimizer
nlm, cases {1, 2, 3} and {4, . . . , 25} are identified as clusters along the
projection direction (−0.558639,−0.599324, 0.573353)T with index value
0.456344, z.95 = 0.2475628 and threshold cluster size value equal to 2. The
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histogram of the obtained projection appears in Figure 3b. Hadi and Si-
monoff (1993, p. 1268) identify remote observations 1, 2 and 3 and indicate
several methods that fail.

6.4 Comparing the Misclassification Proportion of the Index

We compare the average misclassification proportion of the proposed
index in simulations with those obtained in Peña and Prieto (2001) (denoted
by P&P ) for their Kurtosis index, the k-means algorithm (Hartigan 1975),
the Mclust algorithm (Fraley and Raftery 1999) and the J&S moments in-
dex (Jones and Sibson 1987). To determine the importance of spacings in
the index, a referee suggested the spacings to be removed and use instead
supy v(G, y) to identify clusters.

In a Monte Carlo experiment, 5000 sets of 20r observations in Rr

are obtained from a mixture of k multivariate normal distributions as de-
scribed in P&P (p. 1441) with an introduced parameter f taking values
such that the probability of group overlapping for the normal model is 1%;
k = 2, 4, 8, r = 4, 8, 15, 30. Each set of data is projected along all
its observations vectors and the data split corresponding to the maximum I
value is recorded. The same rules as in P&P are used to calculate the av-
erage misclassification proportions. The results are compared with those in
P&P in Table 1. The Monte Carlo experiment is repeated with a mixture of
multivariate tr distributions in Rr, using the same f values with the normal
model as in P&P (Prieto, 2010), r = 4, 8, 15, 30. The results are compared
with those in P&P in Table 2.

The index, obtained using as projections the observations, is success-
ful with samples from normal mixtures and t mixtures. It is not affected
by the curse of dimensionality because no prior estimation of the model
parameters is necessary, the probability of group overlapping is fixed, and
the number of observations increases with r (the dimension). The k-means
clustering method is the main competitor of the new index but the number
of clusters (i.e. k) has to be known in advance.

In Table 3, the average misclassification proportion is obtained for
5000 datasets of 20r observations from mixtures of normal and tr-distribu-
tions in Rr using the f -parameter and the 5% rule in P&P, with p the
mixture proportion for the normal distribution; p = .1, .3, .5, .7, .9, r =
4, 8, 15, 30. The means and the covariance matrices for both distributions
are obtained as in P&P.

In Table 4, the average misclassification proportion is also obtained
for 5000 datasets of 100 observations from 2 distributions that are either
both normal, or both t5 or one normal and one t5, with mixture proportion
p = .25 and the means’ distance σ, 2σ, 3σ; σ and one of the means are
determined randomly and f = 14 as in P&P.
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Table 1. Average misclassification proportions for r-dimensional, normal data; k is the
number of clusters.

r k Kurtosis k-means Mclust J& S THE NEW sup
y
v(G, y)

(P&P) INDEX
4 2 .06 .36 .03 .19 .0789 .1577

4 .09 .06 .07 .29 .2192 .3626
8 .11 .01 .40 .30 .3658 .4462

8 2 .09 .40 .07 .25 .0452 .1371
4 .10 .07 .15 .47 .1860 .3499
8 .08 .01 .32 .24 .3637 .4622

15 2 .15 .53 .09 .30 .0376 .1255
4 .32 .20 .25 .58 .1698 .3480
8 .09 .04 .47 .27 .3682 .4927

30 2 .27 .65 .32 .33 .0908 .1326
4 .60 .33 .61 .61 .1389 .3614
8 .66 .28 .81 .74 .3171 .5260

Table 2. Average misclassification proportions for r-dimensional, Student-t data with r de-
grees of freedom; k is the number of clusters.

r k Kurtosis (P&P) k-means Mclust J& S THE NEW INDEX sup
y
v(G, y)

4 2 .10 .39 .04 .20 .0474 .0696
4 .13 .15 .12 .28 .1552 .2691
8 .16 .24 .41 .36 .3024 .3400

8 2 .09 .36 .11 .29 .0022 .0382
4 .22 .11 .17 .44 .1403 .2740
8 .13 .20 .32 .34 .3277 .3799

15 2 .16 .42 .10 .27 .00006 .0240
4 .36 .16 .25 .57 .1550 .3086
8 .16 .13 .51 .37 .3636 .4488

30 2 .28 .50 .30 .30 ' 0 .0146
4 .57 .14 .62 .62 .1591 .3380
8 .70 .16 .80 .77 .3641 .5272

Comparison of the last two columns in Tables 1, 2 and 4 confirm the
importance of the spacings in the index.

A referee suggested to examine the impact of the sieve when rotating
the data. 1000 data sets are obtained from mixtures of normal and t5 dis-
tributions as in P&P and are rotated using random rotation matrices. The
average misclassification proportions of the original data sets and of the ro-
tated data sets appear in Table 5 and are similar. In addition, 100 data sets
of two-dimensional, 2-normal mixture data of size n are also obtained as in
P&P with f -values 14, 16, 18, 20 and n = 40, 100. Each data set is rotated
100 times with randomly obtained rotation matrices and a sieve of projec-
tion directions is used to detect clusters for M -values 10, 20, 100. In Table
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Table 3. Average misclassification proportions for r-dimensional mixtures of normal and
student-t with r degrees of freedom, p the proportion of normal data and k = 2 clusters.

p r Data sizes THE NEW INDEX r Data sizes THE NEW INDEX
.1 4 (8,72) 0.0235 8 (16,144) 0.0051
.3 (24,56) 0.0587 (48,112) 0.0161
.5 (40,40) 0.0816 (80,80) 0.0230
.7 (56,24) 0.0764 (112,48) 0.0280
.9 (72,8) 0.0589 (144,16) 0.0263
.1 15 (30,270) 0.0017 30 (60,540) 0.0013
.3 (90,210) 0.0056 (180,420) 0.0024
.5 (150,150) 0.0079 (300,300) 0.0033
.7 (210,90) 0.0075 (420,180) 0.0033
.9 (270,30) 0.0080 (560,40) 0.0031

Table 4. Average misclassification proportions for k = 2 mixtures of univariate data with
means µ1 and µ2 and p the proportion of the data from one distribution.

Data distributions p |µ1 − µ2| THE NEW INDEX sup
y
v(G, y)

Two normals 0.25 σ 0.3456 0.4643
0.25 2σ 0.2253 0.2848
0.25 3σ 0.0816 0.1692

Two student-t, df=5 0.25 σ 0.2686 0.3868
0.25 2σ 0.1456 0.2222
0.25 3σ 0.0727 0.1420

One normal and one student-t, df=5 0.25 σ 0.2512 0.3851
0.25 2σ 0.1728 0.2498
0.25 3σ 0.0912 0.1590
0.75 σ 0.3653 0.5282
0.75 2σ 0.2415 0.3077
0.75 3σ 0.0759 0.1750

Table 5. Average misclassification proportions for 1000 data sets of r-dimensional data
constructed as in P&P and using sieves of projection directions.

r k Data M NEW NEW INDEX,
distribution (used in sieves) INDEX ROTATING THE DATA

4 2 Normal 10 0.0758 0.0715
4 2 20 0.0746 0.0773
8 2 5 .0442 .0523
4 2 Student-t, df=5 10 0.0470 0.0474
4 2 20 0.0393 0.0387
8 2 5 0.0011 0.0011
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Table 6. L is the number of data sets (out of 100) for which the obtained clusters after 100
data rotations coincide; n is the data’s size, M and f as in P&P.

n M (used in sieves) f L f L f L f L
40 10 14 51 16 57 18 62 20 59

20 72 74 68 75
100 95 97 95 96

100 10 14 47 16 49 18 47 20 47
20 58 57 55 63

100 85 88 90 93

6, the number of data sets L (out of 100) is reported for which the obtained
clusters coincide with those of all the corresponding 100 rotated data sets
and it is observed that as M increases, L also increases.

6.5 E.U. Countries with Similar Economic Sustainability

The recent public financial crisis in Europe motivated the develop-
ment of the Economic Sustainability Index (Zuleeg 2010), i.e. a composite,
single number indicator, to assess simultaneously E.U. 1 countries relative
to each other. Using the index, we provide groups of E.U. countries with
“similar” economic sustainability.

The Data-The Economic Sustainability Index

The data for each country consists of six indicators that capture differ-
ent economic aspects and balance short, medium and long-term economic
sustainability: GDP growth, Global Competitiveness, government’s net bor-
rowing requirement, debt level as percentage of GDP, corruption level, fu-
ture cost of aging. Sensitivity testing with different weights for each indica-
tor suggested the Economic Sustainability Index (ESI) to be the average of
the six indicators (after standardization).

Use of the Method

For larger values of the economic indicators and of the projection
values to mean better economic sustainability, the signs of the debt level and
the cost of aging are changed. The data is mean-variance standardized.

The index determines country groups with similar economic sustain-
ability using sequential splits of E.U. countries in two groups until their size
is less than 3. For any group of countries, the maximum value of the index
and the associated data split is computed for sets of projection directions-
weights with values greater than 10% but smaller than 30%, obtained using

1. Includes the New Member States.
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(11) with M = 6, 8, 10, 12, 14, 16. One may initially obtain in a group
countries with different economic sustainability but these groups are subse-
quently separated in more homogeneous groups. When M = 16 and two
potential clusters appear for the first time with the highest index value, clus-
ters obtained with M = 18 are also considered along with the corresponding
index value before making the final decision for the split.

The Findings

Initially, Greece is separated alone from the other countries for all
choices of M. The remaining countries are separated in groups A and B
with U.K. finally in the latter.

Group A is separated in sub-groups A1 and A2 : A1=[ {Estonia,
Sweden}, {Denmark, Finland}, Luxembourg] and A2=[A2,1={{Germany,
Austria}, Netherlands}, A2,2={Bulgaria, {Czech Republic, {Poland, Slo-
vakia}}}].

Group B is separated sequentially in 4 subgroups: B1=[Italy, {Spain,
Portugal}], B2= [U.K., {Lithuania Romania}], B3=[Slovenia, {{Ireland,
Cyprus}, Latvia}], and B4 =[Belgium, {France, {Hungary, Malta}}].

Conclusion

The results almost coincide with the extremes in the ESI list. The
8 countries at the top of the list are A1 and A2,1 with Netherlands higher
than Luxembourg. The 4 countries at the bottom are Greece and B1. For the
remaining results, countries in A2,2 are in positions 10-14 in the ESI list with
Belgium between them. The U.K. occupies the 9th position in the ESI list
and is a group of one in our listing. In B3, Slovenia, Ireland and Cyprus are
in positions 16-18 in the list and in B4, Hungary and Malta are in positions
20 and 21.

6.6 Comparison with Other Clustering Methods

R-clustering algorithms k-means (Hartigan 1975), clara (Cluster large
applications) and diana (Divisive analysis algorithm), both in Kaufman and
Rousseeuw (1990), are used to determine clusters for the Economic Sus-
tainability data (Zuleeg 2010). With our index, the countries were initially
divided in 8 sub-groups, hence these clustering methods are used to deter-
mine initially k = 8 clusters and then k = 16 clusters. The results follow;
[ ] are used for the original 8 groups and { } for the subsequent divisions.
Using the k-means algorithm, the original 8 groups are not sub-divided in 16
groups; two new groups are formed and the countries in these groups are not
included between { } in the original partition. Unlike the partition obtained
with the index, all these clustering methods identify in one group Ireland
and the U.K.
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Clusters obtained with clara: [{Belgium, France}, {Germany, Nether-
lands, Austria}, {Slovenia}], [{Bulgaria}, {Czech Republic}, {Estonia},
{Lithuania, Romania}, {Poland, Slovakia}], [{Luxembourg}, {Denmark,
Finland, Sweden}], [{Ireland, United Kingdom}], [{Greece}], [{Spain,
Cyprus, Portugal}], [{Italy}, {Hungary, Malta}], [{Latvia}].

Clusters obtained with diana: [{Belgium}, {Germany, Netherlands,
Austria}, {Denmark, Finland, Sweden}], [{Bulgaria}, Estonia], [{Czech
Republic, Poland, Romania, Slovakia}], [{France}, {Spain, Cyprus, Portu-
gal}, {Ireland, United Kingdom}], [{Greece}], [{Italy}, {Hungary, Malta}],
[{Latvia }, {Lithuania}], [{Luxembourg}, {Slovenia}].

Clusters obtained with k-means: [{Luxembourg, Slovenia}], [France,
{Ireland, United Kingdom}], [{Latvia }, Lithuania], [Belgium, {Denmark},
{Germany, Netherlands, Austria}, {Finland, Sweden} ], [{Bulgaria},
{Czech Republic}, {Estonia}, Romania, {Poland, Slovakia}], [{Italy},
{Hungary, Malta}], [{Greece}], [{Spain, Cyprus, Portugal}].

When k=16, two new additional groups are obtained: [Lithuania, Ro-
mania], [Belgium, France].

7. Properties of the Index and of Its Components

7.1 Properties of I∗ and the Clusters’ Separator

Properties of I∗ are studied for standardized, discrete random vari-
ables with mean zero and variance 1, because its form coincides with that
of the sample index I used in practice with data. Posse (1995) stressed the
need to study the behavior of empirical projection indices.

Proposition 7.1 Let X be a standardized, discrete r.v. with distribution G
and values x1 ≤ . . . ≤ xk ≤ . . . . When, either

a) all the spacings (or gaps) xi+1 − xi have the same size, or
b) xj+1 − xj = max{xi+1 − xi, i ≥ 1} and EX = 0 ∈ [xj , xj+1],

the groups determined by I∗(G) are separated by EX(= 0).
When b) holds,

I∗(G) =

P [X > xj ]P [X ≤ xj][E(X|X > xj)− E(X|X ≤ xj)](xj+1 − xj).

The spacings make a difference in the determination of the clusters’ separa-
tor since the next proposition shows that v(G, y)’s maximizer ys is the mean
of the population. This difference was already confirmed when computing
the average misclassification proportion using supy v(G, y) in Tables 1, 2
and 4.
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Proposition 7.2 Let X be a standardized, continuous random variable with
distribution G. The groups’ separator ys obtained by maximizing v(G, y)
instead of the index is ys = 0 = EX.

The midpoint separator s̃ (see Definition 3.3) is computed for each of
200 samples of size 1000 obtained from the standard normal, t5, exponen-
tial (1) and the mixture .3N(3, 1) + .7t5. Histograms in Figure 4 confirm
that a large proportion of midpoint separators are well spread around the
distributions’ means.

A referee noticed that “the maximum of the index (but not that of
the function v or that of the gaps) did coincide with a reasonable separator
most of the time” and requested additional insight “on the reason why the
proposed method works so well.” Let us try initially to evaluate where the
location of the sample’s midpoint separator is, considering the p-mixture of
two univariate, symmetric, unimodal distributions from the same location
family with means, respectively, 0 and m and variance one; p is the mixture
proportion of the density with mean 0 in this section. Since p is usually
unknown, a reasonable data separator is the point .5m. Recall that Wi (in
(8)) has in the numerator two components,

i(n− i)

n
(X̄[i+1,n] − X̄[1,i]) =

i
∑

j=1

(X̄ −X(j)) and X(i+1) −X(i),

with the former maximized at the largest order statistic that is smaller than
the sample average X̄ and the latter at the maximum gap. When p = .5
and n is large, X̄ is near .5m and for large m-values (≥ 2) large gaps occur
frequently near the mean .5m and if the tails of the distribution are not heavy
it is expected that max{Wi, i = 1, . . . , n − 1} is frequently attained near
.5m. With the same set-up but p 6= .5, X̄ is between 0 and m and due
to the gaps’ sizes near X̄ it is expected max{Wi, i = 1, . . . , n − 1} is
more frequently attained near .5m rather than near X̄. For the normal model,
values are provided in Table 7 for the mean of midpoint separators ¯̃s obtained
from 100 samples of size n = 2, 000 and for the optimal separator when p
is known,

ln(p/(1 − p)) + .5m2

m
,

which minimizes the total probability of misclassification (Johnson and Wich-
ern 1992). The comparison indicates that the multiplication by the gaps is
pulling the midpoint separator near the optimal separator, obtained when
both p and the model are known, for m = 2, 3, 4 and at least for .3 ≤ p ≤ .7.
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HISTOGRAM OF MIDPOINT SEPARATORS

N(0,1) separators

F
re

q
u

e
n

cy

−3 −2 −1 0 1 2 3

0
5

1
0

1
5

2
0

2
5

3
0

t_5 separators
F

re
q

u
e

n
cy

−15 −10 −5 0 5 10 15

0
5

1
0

1
5

2
0

2
5

Exp(1) separators

F
re

q
u

e
n

cy

2 4 6 8

0
5

1
0

1
5

2
0

2
5

0.3 N(3,1)+0.7 t_5 separators

F
re

q
u

e
n

cy

−10 −5 0 5 10 15

0
2

0
4

0
6

0
8

0

Figure 4

Table 7. Optimal separator (OS) and mean of midpoint separators ¯̃s obtained using 100
samples with size 2000 each from 2 normal distributions with means 0 and m and variance
1; p is data’s proportion with mean 0.

m = 4 m = 3 m = 2 m = 1

p OS ¯̃s OS ¯̃s OS ¯̃s OS ¯̃s

0.1 1.45 1.25 0.77 0.61 -0.10 0.49 -1.70 0.54
0.2 1.65 1.47 1.04 0.90 0.31 0.50 -0.89 0.48
0.3 1.79 1.74 1.22 1.08 0.58 0.74 -0.35 0.33
0.4 1.90 1.83 1.36 1.25 0.80 0.77 0.09 0.42
0.5 2.00 1.99 1.50 1.56 1.00 0.90 0.50 0.40
0.6 2.10 2.14 1.64 1.64 1.20 1.13 0.91 0.57
0.7 2.21 2.26 1.78 1.88 1.42 1.50 1.35 0.64
0.8 2.35 2.46 1.96 2.22 1.69 1.65 1.89 0.47
0.9 2.55 2.79 2.23 2.37 2.10 1.71 2.70 0.31
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7.2 The W ’s and Leverage in Simple Linear Regression

This work and the variance decomposition in Yatracos (1998) were
motivated from the results in this section. The original goal was to obtain a
representation of the least squares estimate β̂ of the slope in simple, linear
regression

Y = α+ βX + ε, (12)

that would indicate the role of the X-spacings in determining β̂. The Wi’s
in (8) are functions of spacings and appear below in a decomposition of β̂.
The I-value will indicate unusually large spacings. In higher dimension, in-
formation about large gaps in the dependent variables is obtained by IX (ã).

Proposition 7.3 Let (Xi, Yi), i = 1, ..., n, be observations that follow
model (12) with the usual error assumptions.

a) For the least squares estimate β̂ it holds

β̂ =

n−1
∑

i=1

W ∗
i

(Yi+1 −Yi)

(Xi+1 −Xi)
, (13)

W ∗
i =

n−1(Xi+1 −Xi)[i(Xi+1 + . . .+Xn)− (n− i)(X1 + . . .+Xi)]
∑n

i=1(Xi − X̄)2
,

i = 1, . . . , n − 1. (14)

b) When X1 < X2 < ... < Xn and Yi is the value that is paired with Xi,
W ∗

i = Wi, i = 1, . . . , n− 1.

c) A generalization of the sample variance identity (7) holds:

1

n

n
∑

i=1

(Xi − X̄)2 =

n−1
∑

i=1

i(n− i)

n2
(

∑n
j=i+1Xj

n− i
−

∑i
j=1Xj

i
)(Xi+1 −Xi).

(15)

Remark 7.1 The Wi’s measure also slope leverage. Indeed, let bi =
(Yi+1−Yi)
(Xi+1−Xi)

, b̂i =
(Ŷi+1−Ŷi)
(Xi+1−Xi)

and note that

b̂i = β̂ = Wibi +
∑

j 6=i

Wjbj, i = 1, ..., n − 1. (16)

If the i − th observed slope bi is changed to bi + ∆b, then β̂ is changed to
β̂ +Wi∆b. In addition, if Wi −→ 1 then β̂ −→ bi. That is, Wi represents a
measure of importance of bi in the determination of β̂.
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8. High Dimensional Data and Clusters’ Separation by a Hyperplane

Assume the r-dimensional data X is obtained from the mixture den-
sity pf (r) + (1 − p)h(r), 0 < p < 1, p unknown. Let Sf (r) and Sh(r)

be, respectively, the supports of the densities f (r) and h(r). When Sf (r) and
Sh(r) are separated by hyperplane H with normal a and n is large, IX (a)
determines the sub-groups of X in Sf (r) and Sh(r) as in Example 2.1.

When the common support is not empty, i.e. Sf (r)∩Sh(r) 6= ∅, the two
populations and often the sample are not naturally separated in two groups.
It is intuitively clear that the determination of clusters from Sf (r) and Sh(r) is
easier when either Sf (r) ∩ Sh(r) or the probability of obtaining observations
from it decrease. This is confirmed in the literature for the mixture of two
exponential or two normal distributions when the only unknown model pa-
rameter is p : “the expected precision of estimating p is very low, unless the
distributions in the mixture are well separated” and the Fisher information
regarding p is maximized when Sf (r) ∩ Sh(r) = ∅ (Hill 1963).

Recall that for densities f̃ and h̃ in Rr, their Hellinger distanceH(f̃ , h̃)
is defined from the relation

H2(f̃ , h̃) = .5

∫

Rr

(

√

f̃(x)−

√

h̃(x))2dx = 1− ρ(f̃ , h̃), (17)

where ρ(f̃ , h̃) =
∫

Rr

√

f̃(x)

√

h̃(x)dx is the affinity of f̃ and h̃ (Le Cam
1986, p. 47).

If the supports of f̃ and h̃ are disjoint as in Example 2.1, H2(f̃ , h̃) =
1 since ρ(f̃ , h̃) = 0. The value H2(f̃ , h̃) and equivalently ρ(f̃ , h̃) measure
the separation of f̃ and h̃.

Proposition 8.1 Let (X1, . . . ,Xr) be a random vector with mixture density
pf (r) + (1 − p)h(r). Write the joint densities f (r) and h(r) as products,
respectively, Πr

i=1fi and Πr
i=1hi, where fi and hi are conditional densities

of Xi given Xi−1, . . . ,X1, 1 ≤ i ≤ r. Assume that for any r, kr values
in {ρ(fi, hi), 1 ≤ i ≤ r} are smaller than ε (< 1), with kr increasing to
infinity with r. Then,

lim
r→∞

H2(f (r), h(r)) ↑ 1. (18)

Under the assumptions in Proposition 8.1, the separation of f (r) and
h(r) increases with r and the probability of observing data from Sf (r) ∩Sh(r)

decreases to zero. This holds, for example, when f (r) and h(r) are products
of densities of r independent, identically distributed observations with den-
sity either f or h and H(f, h) > 0. When the sample size n is small and
r is large, due to data sparseness the observations in X from f (r) and h(r)

either form two separated homogeneous groups S̃f (r) and S̃h(r) respectively,
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or there are few observations S̃ obtained from either f (r) or h(r) between
two such groups. Thus, the I-value for the projection of X along a vector
orthogonal to the hyperplane that separates S̃f (r) and S̃h(r) will reveal, when
r is large, these two groups of observations with few observations from S̃
possibly misclassified.

The phenomenon is confirmed when classifying high dimensional
data in two groups. If the data X is obtained from a normal mixture with
known means µf (r) and µh(r) and covariance the identity matrix, the opti-
mum probability of misclassification Φ(−.5||µf (r) −µh(r) ||2) (see e.g. John-
son and Wichern 1992, p. 513) converges to 0 as r increases to infinity if and
only if ||µf (r) − µh(r) ||2 converges to infinity, which is equivalent to asymp-
totic separation of f (r) and h(r); || || is the usual Euclidean distance in Rr.
When the model is unknown, classifiers with probability of misclassification
decreasing to zero as r increases to infinity seem preferable.

9. Appendix

Proof of Proposition 3.1 The projection of the data AX , with A non-
singular, along the normalized vector (A−1)Ta coincides with aTX . Then,
from (10), IAX ((A

−1)Ta) = IX (a), IAX ((A
−1)T ã) = IX (ã) and for X

and AX the indices’ values and the potential clusters and their separators
coincide.
�

Proof of Proposition 7.1 Let pi = P (X = xi), i ≥ 1. For the summands
in (2) it holds that

P [X > xi]P [X ≤ xi][E(X|X > xi)− E(X|X ≤ xi)](xi+1 − xi)

= [

i
∑

j=1

pj

+∞
∑

j=i+1

xjpj −
+∞
∑

j=i+1

pj

i
∑

j=1

xjpj](xi+1 − xi)

= (EX

i
∑

j=1

pj −
i

∑

j=1

xjpj)(xi+1 − xi)

= (−
i

∑

j=1

xjpj)(xi+1 − xi).

The results of the proposition follow.
�
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Proof of Proposition 7.2 Since EX = 0 and

v(G, y) = −

∫ y

−∞
xdG(x), (19)

it follows that v(G, y) is maximized at the separator ys = 0 = EX.
�

Proof of Proposition 7.3 It is shown first that

n
∑

i=1

(Xi − X̄)(Yi − Ȳ )

= n−1
n−1
∑

i=1

(Yi+1 − Yi)[i(Xi+1 + . . .+Xn)− (n− i)(X1 + . . .+Xi)].

(20)

Indeed,

n−1
n−1
∑

i=1

(Yi+1 − Yi)[i(Xi+1 + . . .+Xn)− (n− i)(X1 + . . .+Xi)]

= n−1
n−1
∑

i=1

(Yi+1 − Yi)[inX̄ − n(X1 + . . .+Xi)]

= X̄

n−1
∑

i=1

i(Yi+1 − Yi)−
n−1
∑

i=1

(Yi+1 − Yi)

i
∑

j=1

Xj

= X̄(nYn − nȲ )−
n−1
∑

j=1

Xj

n−1
∑

i=j

(Yi+1 − Yi)

= nYnX̄ − nX̄Ȳ −
n−1
∑

j=1

Xj(Yn − Yj)

= nYnX̄ − nX̄Ȳ − Yn

n−1
∑

j=1

Xj +

n−1
∑

j=1

XjYj =

n
∑

j=1

XjYj − nX̄Ȳ .

(a) Follows from (20) since β̂ =
∑

n

i=1(Xi−X̄)(Yi−Ȳ )
∑

n
i=1(Xi−X̄)2

.

(b) and (c) follow from a) and (20) respectively.
�
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Proof of Proposition 8.1 From the definition of Hellinger distance (17) and
the assumption on the affinity values it follows that, as r → ∞,

H2(f (r), h(r)) = 1−Πr
i=1ρ(fi, hi) ≥ 1− εkr → 1.

�

9.1 Significance of IX (ã) for Normal Sample

IX (ã) (or its approximation) may be compared for significance with
quantiles obtained from its asymptotic distribution under normality or via
simulations for a benchmark distribution. Comparison with the normal model
is justified because for many high dimensional data sets to find unusual pro-
jections one should search for non-normality (Andrews, Gnanadesikan and
Warner 1971; Diaconis and Freedman 1984).

Assume that the population has a finite number of disjoint, connected
components at distance ∆ > 0 and that I∗(G) is attained at the unit norm
direction a0. IX (a) is continuous in a and the unit sphere is compact, so
supa IX (a) = IX (ãn). Since for n large I∗(G) ≈ IX (ãn), under reasonable
assumptions ãn converges a.s. to a0. Then,

P [IX (ãn) ≤ x] =

∫

P [IX (ãn) ≤ x|ãn = a]dFãn
(a),

and for n large

P [IX (ãn) ≤ x] ≈ P [IX (ãn) ≤ x|ãn = a0]. (21)

Since IX (ãn) is affine invariant, we can assume that the covariance
matrix of X1 is the matrix identity J. For observations from a multivariate
normal distribution with covariance J and since IX (a) is location and scale
invariant, (21) implies that

P (IX (ãn) ≤ x) ≈ P (max{Wi(Z1, . . . , Zn), i = 1, . . . , n−1} ≤ x); (22)

Z1, . . . , Zn is a sample from a standard normal distribution. Proposition 9.1
provides an approximation for (22).

Proposition 9.1 (Yatracos, 2009) Let Z1, . . . , Zn be i.i.d. standard normal
random variables, x ∈ R. Then, it holds that

lim
n→+∞

P [nmax{Wi, i = 1, . . . , n− 1} < x+ log n] = exp{− exp{−x}}.

(23)
Remark 9.1 The α-th quantile of the asymptotic distribution in (23) is
xα = − ln(− lnα). The adjusted quantile to be compared with I for signif-
icance is zα = (xα+ lnn)/n. Better approximations for zα can be obtained
involving data’s dimension.
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